
ECE239AS Final Report

Sangjoon Lee
Department of Computer Science

University of California, Los Angeles
Los Angeles, CA 90024
aaccjjt@g.ucla.edu

Sangmin Lim
Department of Mechanical Engineering
University of California, Los Angeles

Los Angeles, CA 90024
limsm3@g.ucla.edu

Donghun Noh
Department of Mechanical Engineering
University of California, Los Angeles

Los Angeles, CA 90024
donghun.noh@ucla.edu

Abstract

Slither.io is a mass multiplayer online game with a simple game mechanism. With
continuously changing environment with random actions imposed by numerous
different players, multiplayer online games are non-deterministic, which further
pushes the boundary of the performance of RL algorithm. In this project, we per-
formed comparative analysis of different RL algorithms. We examined and applied
Deep Q- Network (DQN), Advantage Actor Critic method (A2C), and Proximal
Policy optimization (PPO), with Slither.io as a benchmark for each algorithms
performance measure. Through comparative analysis, we could determine and
compare the efficacy of algorithm. From our findings, we report that the PPO
outperformed DQN and A2C algorithm in Slther.io

1 Introduction

Since the development of Deep Q-learning, Atari games served as a benchmark for comparing the
performances of different reinforcement learning (RL) algorithms [1]. The reason for Atari games
being such a strong benchmark for RL roots from its complexity due to high dimensional visual input
and versatile objectives, which resemble tasks that robots or humans would do. However, multiplayer
online games poses an additional challenge on the RL performance. With continuously changing
environment with random actions imposed by numerous different players, multiplayer online games
are non-deterministic, which further pushes the boundary of the performance of RL algorithm.

Slither.io is an online game where a player controls a snake using a mouse. The basic objective of the
game is to record high scores by eating color pallets to maximize the snake’s body length. The game
ends when the player’s head collides into another snake’s body. Once the player is eliminated then
the snake turns into pellets for other players to feast on.

We chose Slither.io [2] due to its three key characteristics. First, Slither.io provides simple mechanism
for control (controllable through mouse position). Second, it has high randomness in the environment.
Slither.io constantly changes distribution of environment. All players and pellets are spawned in
random position, in random time, and the players behaviors are random strategic behavior conducted
by humans. This feature of Slither.io is a challenging topic to tackle due to high variance of the
visual input and therefore interesting. Lastly, Slither.io is an online game that does not have a specific
terminal state. Constructing a learning algorithm from an online environment requires real-time or
close to real-time data extraction from the web which poses another challenge for the learning to

Preprint. Under review.



extrapolate the information if the information is not real time. Also, without a specific terminal state,
in other words, non-episodic. Therefore, the RL algorithm will always have to update the policy or
values without reaching a terminal state.

With aforementioned characteristics, Slither.io makes a good benchmark for an online game per-
formance analysis. In this project, we performed comparative analysis of different RL algorithms.
We examined and applied Deep Q- Network (DQN) [1], Advantage Actor Critic method (A2C) [3],
and Proximal Policy optimization (PPO) [4], with Slither.io as a benchmark for each algorithms
performance measures.

2 Related works

Several efforts were made to train Slither.io using RL. During our research, we discovered there
were numerous efforts in implementing RL algorithm for Slither.io. We could find several github
repositories with codes. However, only a few written reports were found from 2017 and 2019 [5, 6, 7].
Students at Stanford attempted to train agents to play Slither.io using the Q-learning algorithm by
incorporating human demonstrations and prioritized replay. However, median final score of the
trained agent was only able to acheive 1/3 of the score for the human palyers even after incorporation
of human demonstration [5]. Another attempt from a student from California Polytechnic State
University was made through deep Q-learning implementation with carefully conducted computer
vision algorithm that does the image segmentation through making dictionary of the segmented images
as pseudo-labeled features. However, due to the time taken for the computer vision processing, the
network was inefficient and slow to make decision. The time discrepancy between the action and the
image lead to unsuccessful training, averaging 10 hours to show positive return [6]. Lastly, a different
type of unsupervised learning, Neuroevolution of Augmenting Topologies (NEAT), implementation
on Slither.io was reported [7]. This paper showed great performance of an agent reaching an
average score of 502, three times higher than the score of average human players reported in Ref [5].
However, NEAT was out of scope of our analysis on reinforcement learning since it implements the
neuroevolution. None of the written documents we could find provided any comparative analysis
on existing methods performance on Slither.io. Several github repositories had multiple algorithms
implemented for Slither.io, yet they did not provide thorough analysis or comparison of each methods.

3 RL algorithms

We now introduce the algorithms that were applied for training of the Slither.io.

3.1 Deep Q Network

Deep Q Network (DQN) is the first deep reinforcement learning method published in 2013 and
2015 by DeepMind [1, 8]. Unlike Q-learning, DQN uses a neural network to approximate the
Q-value function as shown in figure 2. There are 4 techniques that make DQN performs much
better than Q-learning as follows: experience replay, target network, clipping rewards, skipping
frames. Experience replay is used to prevent the overfitting problem of deep neural networks. All
data required for Q learning such as state transition, rewards, and actions are stored in experience
replay and update neural networks using mini-batches. This technique helps to increase learning
speed with mini-batches and reduce the correlation between experiences in updating DNN. Target
network makes parameters of target function fixed and replaces them with the latest network every
thousands steps. Clipping rewards is a technique to limit rewards to values between -1 and 2, which

Figure 1: Comparison between Q-learning and DQN

2



makes training more stable. Skipping frames is used to reduce computational cost and gathers more
experiences by skipping frames. Usually, DQN calculates Q values every 4 frames. In the DQN
paper, DQN shows great performance in many Atari games because of the superior performance of
the deep neural network to deal with high dimensional states.

3.2 A2C

Advantage Actor Critic (A2C) is a synchronous version of the Asynchronous Advantage Actor Critic
(A3C), which is one of the state-of-the-art policy-based methods that is different from value-based
methods in terms of the fact that policy-based methods directly optimize the policy without using a
value function. Since A2C and A3c are policy-based methods, they show great performance on the
environment having high dimensional and stochastic continuous action spaces. Furthermore, A2C
and A3C have successfully decrease its gradient variance by using an advantage function as

A(st, at; θ, θv) =

k−1∑
i=0

γirt+i + γkV (stk ; thetav)− V (st; θv) (1)

, where k can vary from sate to state and is upper-bounded by tmax [3]. However, A3C has a delay
issue to diminish the advantage of its asynchrony because even within an asynchronous system,
synchronization for shared resources causes delay. By using synchronous implementation, A2C
could more effectively use GPUs due to larger batch sizes and it shows better performance than A3C
especially using larger policies [9].

3.3 Proximal policy optimization

Proximal policy optimization (PPO) stems from actor critic methods and considered one of the state of
the art policy gradient based RL methods. Similar to A2C, PPO can learn "on-line" by bootstrapping.
However, the actor critic methods does not prevent the new updated policy moving too far away from
the previous policy, which in turn can result in bad update of policy which can be not recoverable.
Trust region policy optimization (TRPO) was first introduced in order to deal with this unrecoverable
malicious update [10]. The main equation for the optimization that was also used for PPO is,

max
x

N∑
n=1

πθ(an|sn)
πθold(an|sn)

Ân (2)

, where πθ(an|sn) refers to current policy,πθold refers to old policy and Ân refers to the advantage
function, which is the difference between the baseline value estimate and the bootstrapped Q function.
This optimization was used along with KL-constraint as boundary on the policy update so that the
updated policy does not move too far away from the previous policy. However, the implementation of
KL divergence is relatively hard. Therefore, PPO implemented a clip function to optimize for the
loss using the following loss function,

LPPO = Ê[min(rt(θ)(̂At), clip(rt(θ), 1− ε, 1 + ε)(Ât)]− c1LV Ft (θ) + c2S[πθ](st) (3)
,

where the first part of the equation refers to the surrogate loss with rt(θ) representing πθ(an|sn)
πθold (an|sn)

,

ε, representing the clipped boundary, c1LV Ft (θ), represents the loss for the value function, and an
entropy term for exploration also introduced in A2C, c2S[πθ](st). Algorithm 1, shows the pseudo
code for the update procedure of PPO. Notice that the algorithm goes over same data multiple
times, however, the author of Ref [4] mentions that PPO still works due to the proximal trust region
constrained by the clipped function.

3



Algorithm 1 PPO
1: for iteration = 1, 2, . . . do
2: for actor = 1, 2, . . . , N do
3: Run policy πθold in environment for T time steps
4: Compute advantage estimates Â1, . . . , ÂT
5: end for
6: Optimize surrogate L wrt. θ, with K epochs and minibatch size M ≤ NT
7: θold ← θ
8: end for

4 Methods

4.1 Environment setup

For environment setup, our team initially investigated OpenAI gym and OpenAI Universe. However,
due to innate latency that arises from Virtual Network Connection (VNC) and OpenAI’s shift of gear
towards newly developed integrated platform (thereby, lack of maintenance on Universe), we decided
to search for direct connection with the internet for the system integration. For this purpose, We
relied on custom python libraries for mouse cursor control, keyboard control, and screen capture.
Then, for web browser’s textual data, we utilized Selenium Library to extract it into python script.

Figure 2: Environment Pipeline

The reinforcement learning environment is setup with following elements: action, observation, and
reward. When the python environment consumes an action, it converts that action into moving mouse
on the web. Then the environment returns the next state observation by taking a screen capture of the
web browser. The reward is returned with the observation by connecting to the web and reading the
snake’s length using Selenium.

The observation space is a fixed rgb channel screen. To reduce the latency of the system, The
environment opens the browser to 500 pixel by 300 pixel wide instead of using full screen. This
effectively reduces the network weights for reinforcement learning agents while also reducing screen
capture latency 4x times. The action space was defined to be discrete space of 8 cardinal and ordinal
direction. We decided to use 8 because these 8 direction allowed worm to travel anywhere while
also providing more flexibility in its locomotion then using just 4 cardinal directions. Finally, the
reward was defined after theorizing and testing several different reward system. we decided to use
increase or decrease of snake’s length for a given timestep to determine negative or positive reward.
Hence, the snake gains zero reward when it doesn’t do anything. when the snake dies, reward of -20
is returned. Then, the environment restarts the game and the agent is disabled to have interaction
with python environment until the python environment perceives that the browser has correctly and
fully reloaded the game. The total latency of the environment differed per computer system, but they
roughly measured 250-400ms per step. we were able to gain 3-4 frames per second. Reset time takes
roughly 5 second.

4



4.2 Agent setup

The reinforcement learning agent was set up with pre-existing reinforcement learning python library
called Stable Baselines. Within the Stable Baselines, we utilized DQN, A2C, and PPO library to
create our agents.

DQN was set up with hyper parameter similar to original nature paper. However replay buffer size
had to be limited due to PC’s limited memory capacity. We used the following parameters. learning
rate=0.0001, replay buffer size=5000, learning starts=2000, batch size=32, gamma=0.99, train freq=4,
gradient steps=1, target update interval=5000, exploration fraction=0.1, exploration initial eps=1.0,
exploration final eps=0.05.

A2C was set up with hyper parameter of the following: gamma=0.99, steps per update=5, value
function coef=0.5, entropy coef=0.0, learning rate=0.0007

PPO was set up with hyper parameter of: learning rate=0.0003, steps per update=2048, batch size=64,
epochs=10, gamma=0.99, clip range=0.2, entropy coef=0.0, value function coef=0.5

5 Results

Each of the Reinforcement Learning Algorithm had to be tested with different parameters to generate
maximum result. In our case, given the general methods and environment described above, we gave
variation to the settings and parameters to make our model perform better. For instance, we would try
to modify the reward signal to better describe the goal of the agent.

We tried changing the reward by give varying value of penalty for dying. The penalty ranged from
-10 to -10000. we also tried giving negative reward for failing to achieve increased length within
a time step. Likewise we also tried resetting after certain timestep of idleness to encourage faster
search for point. Finally, we tried changing observation state from using time series channel to single
frame rgb channel.

5.1 Algorithm specific analysis

For DQN, it seems the best results were gathered when we used the environment that was described
in the method. -20 penalty for death, and +1 for every increase in length. rgb channel observation
state with zero reward for idleness. reset only after death.

During the training, the mean reward of the A2C was not stable along with consistently high variance
throughout the training phase. Neither variance nor the mean reward had a stable increasing behavior
even after 200K iteration even for the best model (-20 penalty for death, reward of difference in length
for each frame). It is known through previous findings in the reinforcement learning community that
conventional actor critic methods are prone to overcorrection and this trend is reflected in the training
results.

PPO showed better performance on training Slither.io than DQN and A2C. We verified that PPO
could train Slither.io by training the game several times with the same parameters as used for the
successfully trained model. All the training curves obtained from the verification process tend to
show increasing curves after 80-100k iterations as shown in Figure 3.

For all the cases, there were a limitation in that the latency between the update in javascript data
feed from the web and the actual moment that the snake dies had discrepancy of at least 5 steps. We
contribute this to be one of the limiting factor for the training.

In the finality of our evaluation, we had three models with best of their own environment and agent
parameters. They were each trained 200,000 timesteps. These fully trained models conducted 5
episodes. Their average scores were measured: DQN: 125.6 A2C: 70.6 PPO: 137.4

As can be seen in Figure 3, the graph shows faster and greater convergence with PPO then either
A2C or DQN. After training for 200,000 steps we each tested the trained algorithm N number of
episodes and found that PPO still dominated in overall score average. The performance of A2C was
compromised due to the update mechanism of policy for A2C, where the “over correction” of policy
will update the global policy and negatively affect the training process. This drawback of A2C is
complemented by introducing trust region based policy updates algorithm such as PPO.

5



Figure 3: Training curves of three different RL algorithms: DQN, A2C, and PPO.

6 Conclusion

By performing comparative analysis on the 3 reinforcement learning algorithm, it is shown that while
A2C performs poorly on online gaming system, PPO remains viable option that outperforms DQN.
Given the recent advancement PPO, actor critic model may become viable reinforcement model that
shows robust performance with flexibility to include continuous actions space for gaming system.

References
[1] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan

Wierstra, and Martin Riedmiller. Playing Atari with Deep Reinforcement Learning. pages 1–9,
2013.

[2] Steve Howse. Slither.io. http://www.slither.io, 2016.

[3] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap,
Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforce-
ment learning. In International conference on machine learning, pages 1928–1937. PMLR,
2016.

[4] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[5] Joan Creus-Costa and Zhanpei Fang. Learning to play SLITHER.IO with deep reinforcement
learning CS229 project report. Category: Theory and Reinforcement Learning. pages 1–6,
2019.

[6] James Caudill. Slither.io Deep Learning Bot. (June), 2017.

[7] Mitchell Miller, Megan Washburn, and Foaad Khosmood. Evolving unsupervised neural
networks for Slither.io. ACM International Conference Proceeding Series, 2019.

[8] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning. nature, 518(7540):529–533, 2015.

[9] OpenAI. Openai universe official blog. https://openai.com/blog/
baselines-acktr-a2c/, 2017.

[10] John Schulman, Sergey Levine, Philipp Moritz, Michael I. Jordan, and Pieter Abbeel. Trust
region policy optimization, 2017.

6

http://www.slither.io
https://openai.com/blog/baselines-acktr-a2c/
https://openai.com/blog/baselines-acktr-a2c/

	Introduction
	Related works
	RL algorithms
	Deep Q Network
	A2C
	Proximal policy optimization

	Methods
	Environment setup
	Agent setup

	Results
	Algorithm specific analysis

	Conclusion

